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We describe a method for implementing deterministic quantum gates between two spin qubits separated by
centimeters. Qubits defined by the singlet and triplet states of two exchange coupled quantum dots have
recently been shown to possess long coherence times. When the effective nuclear fields in the two asymmetric
quantum dots are different, total spin will no longer be a good quantum number and there will be a large
electric dipole coupling between the two qubit states. We show that when such a double-quantum-dot qubit is
embedded in a superconducting microstrip cavity, the strong coupling regime of cavity quantum electrody-
namics lies within reach. Virtual photons in a common cavity mode could mediate coherent interactions
between two distant qubits embedded in the same structure; the range of this two-qubit interaction is deter-
mined by the wavelength of the microwave transition.
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Introduction. Experimental realization of conditional
quantum dynamics of two isolated solid-state quantum sys-
tems has become a holy grail of mesoscopic physics research
due to its potential implications for scalable quantum infor-
mation processing. The majority of theoretical proposals
aimed at this goal is based on nearest-neighbor interactions,
such as the Heisenberg exchange coupling between
quantum-dot �QD� spins.1 However, to achieve lower accu-
racy thresholds for quantum error correction, the implemen-
tation of coherent long-range interactions between two qubits
is highly desirable.2 Optical dipole-dipole interactions,3 ca-
pacitive coupling,4 and optical cavity-mediated interactions2

between spins could be used to realize controlled quantum
gate operations on length-scales comparable to optical wave-
lengths; these mechanisms may then enable coherent inter-
actions between a limited number ��10� of QD spins.

In this Rapid Communication, we show how ultra-long-
range coherent interactions between two spin qubits sepa-
rated by centimeters can be mediated. Our proposal is moti-
vated by two recent remarkable experimental achievements:
�1� realization of circuit QED using a Josephson-junction
charge qubit strongly coupled to a superconducting �SC� mi-
crostrip cavity;5 and �2� demonstration that the singlet-triplet
subspace of a double-QD structure constitutes a promising
qubit exhibiting coherence times exceeding 10 �s.6,7 We
show here that due to the presence of magnetic field gradi-
ents caused by partially polarized QD nuclear spin en-
sembles, it is possible to induce a large electric-dipole cou-
pling between singlet �S� and triplet �T0� states by adjusting
an external gate voltage.8 Since the energy of the S-T0 tran-
sition is in the microwave range, it is possible to use SC
microstrip cavities with a length �L� equal to the transition
wavelength ��� and a cavity-volume Vcav�10−8�3 to mediate
interactions between two qubits embedded in the same cavity
via virtual microwave photon exchange. A distinguishing
feature of our proposal is the large separation between the
length scales determining single-qubit control, determined
either by fabrication ��50 nm� or optical wavelength
��1 �m�, and that of two-qubit interactions, ultimately de-
termined by the wavelength corresponding to the �adjustable�
S-T0 qubit transition. As in Ref. 4, the qubits here are

coupled via their electric dipole moment; however, the use of
a cavity does away with the 1/r3 decay of the dipolar inter-
action that limits the range of the coupling in Ref. 4. In
contrast to the scheme introduced in Ref. 9 which couples
spins via their magnetic dipole moment, our proposal does
not require the use of electron spin resonance �ESR�.

Figure 1 shows the structure that we envision: the micro-
strip cavity is defined by a wavelength-long center SC strip
separated from the ground planes by �100 nm. The whole
structure is deposited on a molecular beam epitaxy �MBE�-
grown GaAs wafer containing a stack of two self-assembled
QDs that are tunnel coupled and buried �100 nm below the
surface. Finally, �50 nm below the lowest QD layer lies
either a n-doped 20 nm GaAs layer or a modulation-doped
quantum well. The Ohmic contact to this bottom electron
reservoir allows for applying a gate voltage Vgate that is used
to inject single electrons into each QD deterministically and
to bring the electronic states of the two QDs in and out of
resonance.10 Even though the self-assembled QDs in the first
layer nucleate at random locations, the QDs of the second
layer have a very high likelihood for nucleating directly
above the QDs of the first layer. It has been shown that
atomic force microscopy can be used to determine the posi-
tion of stacked QDs with a spatial resolution of 25 nm.11 In
order to apply independent gate voltages to two double QDs
embedded in the same cavity, it will be necessary to wafer-
fuse two separate samples before depositing the SC thin
layers.12

Coupling mechanism. Coupling the spin singlet �S� and
triplet �T0� in a double QD �the two-qubit states� via the
emission or absorption of a cavity photon requires a suffi-
ciently strong electric-dipole transition between the two
states.13 The key question is under what conditions it is pos-
sible to obtain an electric-dipole transition in a double QD.
First, we remark that the two QDs need to be coupled via
inter-dot tunneling �with a tunneling energy t� for a nonzero
dipole matrix element; indeed, we find below in Eq. �2� that
the matrix element is proportional to the singlet-triplet en-
ergy splitting, i.e., the exchange energy J� t2.14

Provided that �t��0, there are still two independent sym-
metries that can prevent electrical dipole transitions. One of
the two symmetries derives from the spin-conserving nature
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of the electron-photon interaction. The spin singlet �S� and
triplets �T0,±� are eigenstates of the total spin with different
spin quantum numbers S=0 and S=1 and cannot be trans-
formed into each other by the emission or absorption of a
photon which changes only the orbital angular momentum.
However, �S� and �T0� are mixed, and thus, the spin selection
rules are broken by the presence of a magnetic field that is
inhomogeneous on the scale of the interdot distance. Such a
field inhomogeneity �h is usually unavoidable in the form of
the Overhauser field due to the hyperfine coupling of the
electron spin to the surrounding nuclear spins in the QD
material. The dipole matrix element given below in Eq. �2� is
indeed proportional to �h.

The second problem to be overcome if dipole transitions
are to occur between �S� and �T0� in a double QD is the
orbital symmetry that exchanges the two QDs. The effect of
tunneling on �S� consists in the admixture of the �S�1,1��
singlet �one electron in each QD� with the states �S�2,0�� and
�S�0,2�� that involve two electrons on the same QD; for sym-
metric QDs, this admixture is restricted to the symmetric
combination �D+�= ��S�2,0��+ �S�0,2��� /�2 of doubly occu-
pied states on the two QDs, while the electric-dipole Hamil-
tonian has odd parity �it can be represented in terms of the
momentum or the position operator, both having odd parity�
and thus couples the singlet �even parity� exclusively to the
antisymmetric combination �D−�= ��S�2,0��− �S�0,2��� /�2,
and thus not to the “qubit” singlet. The mirror symmetry
between the QDs is broken if the QDs are electrically biased,
thus detuning their single-electron levels by an energy �.
Roughly speaking, the electric bias � creates a situation with
a mobile charge that allows for an electric-dipole moment
which is absent in the unbiased double QD ��=0�. We plot
the two-electron spectrum in a double QD as a function of �
in Fig. 2. We expect that the dipole matrix element is pro-
portional to �.

Having discussed the underlying physical considerations,
we proceed with the key results of the paper and defer the
derivation of qubit-cavity coupling strength g to the last part
of this Rapid Communication. In the presence of electric �or
magnetic� dipole coupling between the states �S� and �T0�
that define our qubit, the Hamiltonian is

H =
�̄

2
�z + g�x�a + a†� , �1�

with �̄ the S-T0 splitting and, for electric dipole coupling,

g = eaE0
J

	


���h/2�
U2 − �2 − ��h/2�2 . �2�

The vacuum value of the electric field is given by E0
=Vrms

0 /d=�	
 /2�0�Ld2,15 where L is the length of the center
SC, d is its separation from the ground SC planes, and � is
the effective dielectric constant seen by the cavity mode. The
operators a† and a create and annihilate a cavity photon with
frequency 
 /2�. The energy denominator in Eq. �2� arises
from the admixture of the S�1,1� and T0 states with the dou-
bly occupied states S�2,0� and S�0,2� that are separated in
energy by U±�±�h /2. The details of the derivation of Eqs.
�1� and �2� will be given further below.

Two-qubit coupling. We now turn to the situation of two
double QDs coupled to the same cavity, as shown in Fig. 1.
By introducing the rotating wave approximation in Eq. �1�
and eliminating the cavity mode using a Schrieffer-Wolff
�SW� transformation,2,16 we obtain

Heff = 	
i=1,2

�̃i

2
�z

�i� + geff��+
�1��−

�2� + �−
�1��+

�2�� , �3�

with the effective qubit-qubit coupling parameter geff
=g1g2�1/ ��̄1−	
�+1/ ��̄2−	
��, and the Stark-shifted
single-qubit splitting, �̃i /2= �̄i /2+gi

2�
n�+1/2� / ��̄i−	
�,

FIG. 1. �Color online� The proposed setup
with two vertically coupled double QDs next to a
superconducting microstrip cavity. The topmost
QD serves as a marker.

FIG. 2. �Color online� Energy of the two-electron states in a
double QD as a function of the interdot detuning � around the
resonance �=U, indicated by a dotted vertical line. The parameters
chosen for the plot are U=10 meV, t=0.1 meV, �h=0.15 meV, and
g�BB=1 meV.
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where 
n�= 
a†a� denotes the number of photons in the cav-
ity.

Qubit-cavity coupling. To derive Eqs. �1� and �2�, we con-
sider the Hamiltonian of a single qubit in the cavity,

H = Hel + Hcav + Hdip, �4�

describing the electronic degrees of freedom, the cavity field
Hcav=	
�a†a+1/2�, and the electric-dipole coupling be-
tween the qubit and the cavity. In the first step of our deri-
vation, we concentrate on the electronic part: we write Hel
=HD+HT+Hint where

HD = 	

=L,R

�,��=↑,↓

c
��
† ��
 +

	

2
g�BB
 · �����c
�, �5�

denotes the single-electron Hamiltonian of the lowest-energy
orbital on each separate QD, HT= t	�=↑,↓�cL�

† cR�+cR�
† cL�� ac-

counts for electron tunneling between the QDs, and Hint
=U	
=L,Rc
↑

† c
↑c
↓
† c
↓ describes the Coulomb interaction be-

tween two electrons occupying the same QD. In Eq. �5�, �
=�L−�R is the asymmetry of the double QD and BL,R
=B±�B /2 the effective magnetic field for an electron on the
left �right� QD. The presence of nuclear spins in the QDs
gives rise to inhomogeneous effective magnetic �Overhauser�
fields BL,R=	iAiIL,R

i , where IL,R
i is the ith nuclear spin in the

QD L, R, and Ai is the corresponding hyperfine coupling
constant.17 The operators c
�

† �c
�� create �annihilate� an
electron in an orthogonalized Wannier orbital �L,R= ��L,R

−��R,L� /�1−2S�+�2 in the QD 
=L ,R with spin �= ↑ ,↓,
where S= 
�L ��R� denotes the overlap integral between the
left and right unnormalized orbitals and �= �1−�1−S2� /S. In
parabolic QDs, the wave functions �
 are Gaussian.

A low-energy two-electron double QD where only the
ground orbital state on each QD can be occupied, has six
possible states: the three spin triplets �T0�= 1

�2
�cL↑

† cR↓
†

+cL↓
† cR↑

† ��0�, �T��=cL�
† cR�

† �0� ��= ↑ , ↓ � with Sz=0, ±1, and
the three spin singlets �S�
�S�1,1��= 1

�2
�cL↑

† cR↓
† −cL↓

† cR↑
† ��0�,

and �D±�= 1
�2

�cL↑
† cL↓

† ±cR↑
† cR↓

† ��0�, all with S=Sz=0. Here, D±

are linear combinations of the states with double occupation
of a QD and �0� is the state with no electrons.

We choose a coordinate system such that the z axis is
along the homogeneous part of the field B and decompose
the difference field into its longitudinal and transverse parts,
�B=�Bz+�B�. We assume �B��Bz which ensures that the
spin-polarized states �T�� are decoupled from the remaining
four states.18 We can then write the Hamiltonian as the four-
by-four matrix in the basis spanned by �T0�, �S�, �D+�, and
�D−�,

H =�
0 �h/2 0 0

�h/2 0 2t 0

0 2t U �

0 0 � U
� , �6�

where we have introduced the relative Zeeman energy �h
=g�B�Bz between the dots. For �=0, the �D−� state com-
pletely decouples because its orbital symmetry forbids any

coupling to the other singlets, while a coupling to the triplet
is impossible due to spin conservation.

In the weak tunneling regime t�U−� we can eliminate

�D±� by means of a SW transformation16 H̃=e−SHeS�H0
+ �HT ,S� /2, with S=−S† and H0=HD+Hint. The terms of or-

der HT are cancelled in H̃ because we choose S such that
�H0 ,S�=−HT,

S =
4t

�U2 − �2�2 − 2�h2�U2 + �2�
� 0 s

− s 0
� , �7�

with

s = � �h�U2 + �2 − ��h/2�2� − 2�hU�

2U�U2 − �2 − ��h/2�2� − 2��U2 − �2 + ��h/2�2�
� .

�8�

We assume here that we are in the regime U� t ,�h and
allow � to lie in the whole range 0���U. The effect of the
SW transformation is to separate the states with single occu-
pation from �D±� within the lowest order in t / �U−�� in the
Hamiltonian,

H̃ ��H̃S 0

0 H̃D

�, H̃S �� 0 �h̃/2

�h̃/2 − J
� , �9�

with the exchange coupling

J =
4t2U�U2 − �2 − ��h/2�2�

�U2 − �2�2 − 2��h/2�2�U2 + �2� + ��h/2�4 , �10�

and the effective relative field

�h̃ = �h�1 −
J�U2 + �2 − ��h/2�2�

4U�U2 − �2 − ��h/2�2�� . �11�

Note that for �=�h=0, Eq. �10� reduces to the familiar ex-
pression J=4t2 /U. From Eq. �9�, we obtain the singlet and
triplet eigenenergies

�̄± =
1

2
�− J ± �J2 + �h̃2� 
 −

J

2
±

�̄

2
. �12�

Dipole matrix element. Optical transitions conserve spin,
therefore, transitions between the singlets �S�, �D±� and the
triplets �Ti� �i=0, ↑ , ↓ � are forbidden. However, the presence
of an inhomogeneous magnetic field �B breaks spin symme-
try and allows for electric dipole transitions. The dipole cou-
pling to a single cavity mode is described by19

Hdip = −
e

m
A0 · p = −

e

m
� 	

2�0�V

�1/2

� · p�a + a†� , �13�

where V=Ld2, A0 denotes the vector potential at r=0 and a†

�a� creates �annihilates� a cavity photon with frequency 
,
described by Hcav. In the following, we determine the dipole
matrix element

g = −
e

m
� 	

2�0�V

�1/2


T̄0�� · p�S̄� , �14�

where �S̄� and �T̄0� are the eigenstates of H̃S in Eq. �9�.
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In the single-particle eigenbasis of HD+HT, i.e., the
bonding and antibonding orbitals ��±,��= �cL�

† ±cR�
† ��0� /�2,

and using 
n�p�m�=−im
n��HD+HT ,x��m� /	, we
find 
�±�p��±�=0 and 
�−�p��+�= �−imt /	��
�L�x��L�
− 
�R�x��R�+2i Im
�L�x��R�� /2�1−S2. The last term can
have a nonzero component perpendicular to x due to orbital
diamagnetism, but it turns out that this real contribution to
the single-particle matrix element does not contribute to g.
We find 
�−�px��+�= imta /	, while the other components
have vanishing imaginary parts. The electric dipole moment
of the double QD is thus directed vertically in Fig. 1 and
couples to the vertical component of the cavity field which is
increased by positioning the QDs close to the microstrip.

The only nonvanishing two-electron matrix element be-
tween the unperturbed states �S�, �T0�, and �D±� is


D−�px�S� = 2i Im
�−�px��+� = 2imta/	 . �15�

We can transform Hdip into the new basis using the same SW

transformation H̃dip�Hdip+ �Hdip ,S�. In the subspace

spanned by the transformed states �S̃� and �T̃0�, we obtain for
the momentum operator in Hdip

p̃x =
iam

	

�J�h/2

U2 − �2 − ��h/2�2�0 − 1

1 0
� . �16�

Transforming Eq. �16� into the eigenbasis of Eq. �9� is a
rotation in the �pseudo�-xz plane thus leaving the dipole
Hamiltonian Eq. �16�, having the form of a pseudofield in the
y direction, invariant up to a phase factor. With Eq. �14�, the
qubit-cavity Hamiltonian Eq. �4� in the logical subspace of
the singlet-triplet qubit takes the form of Eq. �1� with the
coupling constant Eq. �2�. Close to resonance, we can re-

place 	
 by �̄= �̄+− �̄−=�J2+�h̄2 in Eq. �2�. For
	
�0.1 meV, ��13 �GaAs�, V=1 cm�100 nm�2, we arrive
at a vacuum field of E0�25 V/m. For self-assembled QDs,
we estimate the dot distance to be of the order of a

�10 nm, therefore, eaE0 /h�0.25 �eV�65 MHz.
For further discussion, we introduce �2=U2−�2 and work

in the regime of a strongly biased QD pair, ��U. We can
envision a hierarchy of energy scales �h ,J���U, e.g.,
J��h�0.1 meV �for recent experimental results on opti-
cally generated nuclear polarization in QDs, see Ref. 8�,
��1 meV, and U�10 meV. In this case �h̄��h, and near
resonance g�eaE0. Thus, g�
 /Q ,�, provided that the cav-
ity quality factor Q�104 and the spin decoherence rate
��107 s−1. The SW transformation can be applied if
t /��2−�h2�1: hence the “resonance” �→�h where for-
mally g→eaE0 is not within the regime of the validity of our
result. If J��h���U, we can simultaneously satisfy
U�h /��1 �g�eaE0� and t /��1. In the regime � ,�h�U,

we obtain �h̄��h and therefore g�eaE0��h /U2�eaE0.
Conclusions. A cavity-double-QD coupling strength of

g�65 MHz implies that it is possible to implement two-
qubit gates on time scales �10 ns; while this is already three
orders of magnitude shorter than the spin �memory� decoher-
ence time, an important open question that needs to be ad-
dressed is the gate errors. The fact that total spin is not a
good quantum number during the gate operation when the
dipole-coupling of �S� and �T0� states is on, most likely in-
troduces additional phonon or charge fluctuation mediated
decoherence. However, even in the case of relatively strong
charge decoherence, one could still envision using the
cavity-mediated coupling as a source of entanglement that
can be distilled and used for remote gate operations. We also
emphasize that the observation of conditional quantum dy-
namics between two spins with a macroscopic separation
would itself be an exciting goal for the emerging field of
spintronics.

Note added. Recently, we became aware of a related
manuscript under preparation �see Ref. 20�.
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